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Disclaimer 

This document contains material, which is copyright of certain SnapEarth consortium parties and may not 

be reproduced or copied without permission. The information contained in this document is the proprietary 

confidential information of certain SnapEarth consortium parties and may not be disclosed except in 

accordance with the consortium agreement. 

The commercial use of any information in this document may require a license from the proprietor of that 

information. 

Neither the SnapEarth consortium as a whole, nor any certain party of the SnapEarth consortium warrants 

that the information contained in this document is capable of use, or that use of the information is free from 

risk, and accepts no liability for loss or damage suffered by any person using the information. 

The contents of this document are the sole responsibility of the SnapEarth consortium and can in no way 

be taken to reflect the views of the European Commission. 
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Executive summary 
 

This document presents the development of the SnapEarth EarthSignature service to be developed in the 

WP3 of the SnapEarth project. 

EarthSignature is the service that provides the interpretation of Sentinel2 products for all the pilots in the 

project. The goal of EarthSignature is to extract land cover information from the raw pixels of a Sentinel2 

product. We achieve this task by performing semantic segmentation methods to assign a category to each 

product pixel. The classes we define for this task are critical because they represent the utility of our service. 

It is the reason we decided to use the categories from the Corine Land Cover (CLC) taxonomy for our 

primary segmentation model. Still, we also provide models for the pilots with specifics needs. 

The document will present the architecture of EarthSignature and the progress so far in its implementation. 

We will describe how we get the products, the processes we applied to them, how we train the models, and 

how we make the segmentation results available for the pilots. 
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1. Introduction 

1.1  Scope of the deliverable 

 

This document reports the status and achievements of Task 3.3, EarthSignature software v1. This 

deliverable aims to present EarthSignature’s architecture and describe its implemented components and 

those that are not yet implemented. The deliverable is composed of this document and an appendix 

describing the messages exchanged between EarthSignature and the services that will query its database. 

The appendix also describes the endpoints to connect to the service. 

The document is structured as follows. Section 1 provides an overview of the EarthSignature service, 

starting with a brief description of the document and an overview of its architecture. Section 2 describes 

the status of each service at the date of delivery. The section is divided into three subsections corresponding 

to one module of the service. For each subsection, we provide an overview of the architecture of the 

components. We describe the role of each element, and finally, we describe the technologies we used for 

the development. 
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1.2  Architecture overview 

EarthSignature is a service whose goal is to download periodically new Sentinel 2 products, interpret theirs 

content using semantic segmentation prediction then store the result in a database. This task is performed 

weekly until the v2 of the service, then will be done daily for the final version of the service. The pilots will 

access the service using a gRPC API1. Figure 1 is a coarse view of the architecture, and in each of the next 

subsections, we present a detailed picture of the architecture of the service. 

 

 

Figure 1: Architecture overview of the EarthSignature service 

In the project, we focus on products that cover the European territory. The EarthSignature service contains 

three components:  

• The Monitor service which is the component that handles the products download and processing 

of the data. It first searches the available products for a given date on a provider and then downloads 

 

1 https://grpc.io/docs/what-is-grpc/ 
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them. Then the service prepares the products for inference using the Model service and finally 

sends them to the Database service. During the first period of the project, the service run weekly 

and at the end of the project it should run daily. 

• The Model service which is used to apply a specific model to a processed product. The service 

also manages the entries and the updates of the models. The service must handle at least three 

segmentation models:  

o A model for the CORINE Land Cover  

o A model for burnt areas 

o A model for fine-grained segmentation of crops. 

• The Database service which is the component that stores all the information generated by the 

model and downloaded from the provider. The service is publicly accessible via a gRPC API to 

query a list of inferred products. This service is also internally accessible within EarthSignature so 

that new entries can be added to the database. 

The pilots have access to the segmented product using the database gRPC API. 
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2. Services Implementation status 

2.1  Monitor service 

The Monitor service is the heart of EarthSignature. It is the service that checks if new data is available from 

the provider. It downloads and pre-processes them for the Model service and finally format and send the 

data to the Database Service. We show the whole process in Figure 2. 

 

Figure 2: Architecture overview of the Monitor service 

This figure shows the different processing applied to an image before sending it to the database. The service 

first performs a search request to the provider to retrieve the new products of the current day. The search 

results are then sent to a scheduler that schedules a worker for each product in the search's results. The 

workers are independent and can be run in parallel. Finally, each worker sends its output to the Database 

service using the gRPC API. 

The downloader module can download the product from various providers. This module uses the EODAG 

library to download the products from the providers, a list of the available provider can be found in the 

EODAG documentation2. 

The segmentation model expects L2A products as input. However, this kind of product is not available 

from every provider. In contrast, L1C products are available from most providers, so we download L1C 

products by default. In the next version of the service, we will download by default L2A products when 

available to save computing time. 

 

2 https://eodag.readthedocs.io/en/latest/getting_started_guide/providers.html. 
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The product processor is the module that transforms L1C products to L2A products using the Sen2Cor 

library from the ESA. Also, machine learning models usually need to standardize input data and apply 

model-specific transformations called preprocessing. The product processor also performs the 

preprocessing of the data like the normalization of the images or the re-arrangements of the channels.  

Luigi3 is the task manager we use to handle the whole pipeline. Luigi is a package that helps you build 

complex pipelines of batch jobs. It takes dependency resolution, workflow management, visualization, 

handling failures, command line integration, and much more. Figure 3 shows the dashboard of the Luigi 

scheduler. It summarizes the status of the tasks in the pipeline. Using this dashboard, we can monitor the 

status of the different tasks and particularly which jobs are running, which tasks are finished, and which 

tasks failed. 

 

Figure 3: Overview of the dashboard of the Luigi software 

Luigi schedules the tasks of the pipeline as a directed acyclic graph (DAG). Each dot in Figure 4 represents 

a task scheduled by Luigi. The tasks run following the link between them. Using the dependencies between 

the tasks, Luigi can efficiently run them in parallel. Each line corresponds to the different processing that 

will be performed on each image. The color of each dot corresponds to the status of the task. If the dot is 

red, the job failed if the dot is green, the job succeeded, if the dot is yellow, the job is waiting to be run, and 

if the dot is blue, the task is still running. 

 

3 https://luigi.readthedocs.io/en/stable/  
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Figure 4: Visualization of the data processing pipeline  
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Table 1 gives the status of the features that must be implemented in the Monitor Service. The majority of 

the features planned for the service are implemented. The remaining features include the integration of the 

models trained on custom datasets. 

Table 1 Status of the modules in the Monitor service 

Module Status 

Downloader  Finished 

- Download L1C product 

- Unarchive result 

- Store resulting products 

Product processor In progress 

- Transform L1C to L2A product: 

finished 

- CORINE Land Cover model 

preprocessing: finished 

- Burt Areas preprocessing: not 

started 

2.2 Model service 

 

To provide a high-quality segmentation service, EarthSignature uses a deep-learning-based model. Serving 

deep neural networks can be challenging, so we developed this service to serve the various models 

developed in the project efficiently. Figure 5, shows an overview of the architecture of the service. A client 

sends input data formatted for the inference. This data will be scheduled for inference, and if there is enough 

data, it will be batched to improve latency. The server also manages the lifetime of a model. It loads it when 

needed and manages resources for the model. 
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Figure 5: Architecture overview of the Model service 

The model service performs two tasks. First, it manages the different models by keeping track of their 

history and making them accessible for inference using the model repository component. Second, it serves 

the models to the client using the Inference server using appropriated computing resources. Thanks to this 

component, we centralize deployment, updates, and access to the models of EarthSignature for easier access 

to the clients. 

The following section describes the process for training the model and which data are used for the training. 
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2.2.1 Training process used in EarthSignature Software V1.  

This section presents the deep learning approach used in constructing the models for EarthSignature 

Software V1. In particular, the section defines and explains the problem, overall approach, network 

architecture, training pipeline, and experimental setup details. 

Problem definition: EarthSignature uses a deep learning based semantic segmentation model to provide a 

high-quality service. The semantic segmentation model maps pixels of an input image or a satellite product 

to one of predefined land cover categories. An important challenge in training is that the annotation masks 

have much lower resolution (100m) than Sentinel-2 satellite imageries which have 10m/px and 20m/px 

spatial resolution. In addition, visual inspection shows that the CLC annotations can occasionally be 

incorrect in larger regions as well. Therefore, the CLC annotations provide weak and incorrect labels for 

both training and validation purposes (as shown in  Figure 6), yielding a challenging weakly and noisily 

supervised learning problem. 

 

Figure 6: Examples of noisy CLC samples Left: Image, Right: (noisy) CLC annotation. 

Main approach: Deep convolutional neural networks, in particular Convolutional Neural Networks 

(CNNs), are used in the construction of the semantic segmentation model. The model takes a preprocessed 

input image (described below) and passes through the deep convolutional layers, and outputs a prediction 

tensor. The prediction tensor contains the probability distribution over target classes for each pixel of the 

input image. By applying a stochastic gradient descent-based optimization algorithm and minimizing the 

pixel-wise categorical cross-entropy loss between ground-truth and predicted annotation masks in an 

iterative manner, the network is trained towards predicting per-pixel true land cover classes. 

Architecture: The semantic segmentation model is a modified version of a single scale, fully-convolutional 

UNet semantic segmentation network [1], illustrated in Figure 7. The model consists of a contracting path 

and an expansive path, which gives it the U-shaped architecture. The contracting pathway is a typical 

convolutional network that consists of repeated application of convolutions with 3x3 kernels, each followed 

by a batch normalization and a rectified linear unit (ReLU) and a max pooling operation. During the 

contraction, the spatial information is reduced while feature information is increased. The expansive 

pathway combines the feature and spatial information through a sequence of up-convolutions followed by 

repeated application of convolutions with 3x3 kernels each followed by a batch normalization and a ReLU, 

and concatenations with high-resolution features from the contracting pathway. At the end of the network 

architecture, there is a single convolution operation with 1x1 kernel which maps the number of feature 

channels to a number of predefined land cover categories followed by a soft-max activation function during 

training. 
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Figure 7: Architecture of the modified Unet semantic segmentation model 

Each gray box represents the feature maps in each convolutional layer. The number of channels used is 

indicated on top of the gray boxes (Adapted from https://innolitics.com/articles/medical-image-

segmentation-overview/ ). 

Training pipeline. The training process of the model is divided into several stages. The first stage in the 

training pipeline applies the necessary preprocessing on input images and annotation masks. For the images, 

several training data statistics (max, min, channel-wise-mean) are computed and input images are min-max 

scaled and channel-wise mean-centered, in order. Then, left-right flipping, up-down flipping, and random 

rotation in the interval of [-180°,+180°] are applied on both images and annotation masks, each with a 50% 

probability as augmentation methods.  

The final semantic segmentation model is trained for 34 epochs with a batch size of 128 and a learning rate 

of 1e-3 with an Adam optimizer with beta coefficients of 0,9 and 0,999. The train and validation loss plots  

 can be found in Figure 8 (the dataset details are provided below). At epoch 34, validation loss takes its 

lowest value. 



SnapEarth Deliverable 3.2 – “Earth Signature software v1” 

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth  Page 18 of 28 
 

 

Figure 8: Loss plot of the semantic segmentation model during training 

In addition to the main model, pilots (or external users) may need to train problem-specific models with 

classes outside the CLC Level 2 Nomenclature. For such cases, pilot-specific datasets provided by the 

partners are used for the construction of pilot-customized versions of land cover segmentation models. For 

this purpose, the general-purpose model is adapted to these ad-hoc needs through model fine-tuning 

methodologies. In particular, the layers of the pre-trained deep semantic segmentation network are frozen, 

the final classification layer is replaced with a randomly initialized layer that performs classification among 

only pilot-specific target classes. Currently, only the classification layer is adapted to the target due to data 

limitations, however, the approach can easily be extended to full-fledged fine-tuning in the presence of a 

large-scale pilot-specific data set. 

Experimental setup: The main semantic segmentation model is developed using three different datasets. 

The CLC dataset contains noisy annotations from Corine Land Cover 20184 and is used for training and 

testing. HRL5 and URBAN-ATLAS6 based datasets are more fine-grained and less noisy in their annotation 

quality when compared to the CLC dataset and are used for evaluation only. In addition, a burnt-area only 

dataset, provided by CERTH (therefore, referred to as the CERTH dataset) is built with satellite imageries 

and corresponding burnt area annotations and is used to evaluate the performance of pilot-specific training.  

For the development and evaluation of the main model, a dataset with 515131 120x120 images of Sentinel-

2 L2A products is constructed. Each image has four spectral bands in 10m resolution (Band-02, Band-03, 

Band-04, Band-08) and their corresponding Corine Land Cover (CLC) 2018 pixel-level annotation masks. 

Image crops are taken from BigEarthNet7 dataset and corresponding pixel-level annotation masks are 

extracted in an automated way from the CLC 2018 data. The dataset is divided into three splits (training, 

 

4 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 
5 https://land.copernicus.eu/pan-european/high-resolution-layers 
6 https://land.copernicus.eu/local/urban-atlas 
7 http://bigearth.net 

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/local/urban-atlas
http://bigearth.net/
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validation, and test splits) by following the proposed splits of the BigEarthNet paper. There are 267362, 

122844, and 124923 samples in training, validation, and test splits, respectively.  The semantic 

segmentation model is trained with samples from the training split and its performance is monitored on 

validation split to tune hyper-parameters and to avoid overfitting. The final performance of the model is 

reported using samples belonging to the test split. 

The constructed HRL and URBAN-ATLAS benchmarks contain 4 and 19 classes, which are mapped to 

their counterparts in CLC Level 3 nomenclature. Therefore, a CLC-trained model can directly be evaluated 

on HRL and URBAN-ATLAS benchmarks. These datasets are divided into three splits in the same way as 

the splitting procedure as the CLC dataset. However, since the HRL and URBAN-ATLAS datasets are only 

used for validation, their training splits are ignored and model performance on crops belonging to validation 

and test splits are considered as the final test performance. The samples belonging to the CERTH dataset 

are also divided into three splits and samples belonging to train split are used for pilot-specific fine-tuning, 

samples belonging to validation split are used for monitoring, and samples belonging to test split are used 

to evaluate the final performance of the fine-tuned model for the pilot-specific task.    

Constructions of pilot-specific models: Pilots (or external users) may need to train problem-specific 

models with classes outside the CLC Level 2 Nomenclature. For such cases, pilot-specific datasets provided 

by the partners are used for the construction of pilot-customized versions of land cover segmentation 

models. For this purpose, the general-purpose model is adapted to these ad-hoc needs through model fine-

tuning methodologies. In particular, the layers of the pre-trained deep semantic segmentation network are 

frozen, the final classification layer is replaced with a randomly initialized layer that performs classification 

among only pilot-specific target classes. Currently, only the classification layer is adapted to the target due 

to data limitations, however, the approach can easily be extended to full-fledged fine-tuning in the presence 

of a large-scale pilot-specific data set. 

2.2.2 Status of the model (V1)  

Evaluation metrics: There are two accuracy metrics being used to compute the performance of the model 

on the aforementioned datasets. Average normalized accuracy is a simple metric that calculates the ratio of 

the sum of true positive and true negative classifications overall classifications. Intersection Over Union 

(IoU) quantifies the percent overlap between the target mask and predicted mask in segmentation problems 

and when a false prediction occurs, it does not only penalize the class of which ground-truth label of the 

pixel belongs, also penalizes the class of which predicted label belongs. Therefore, it is a stricter metric 

compared to the more commonly used average normalized accuracy. The IoU score is calculated for each 

class separately and then averaged over all classes to provide a global mean IoU score of semantic 

segmentation prediction.  

The main experimental results are presented in Table 2. From the results, it can be observed that IoU is 

indeed a much stricter metric. In addition, we observe that while the CLC evaluations are noisy (due to 

label noise and weak annotations), the model preserves comparable performance on HRL and URBAN-

ATLAS datasets. We also notice that for the binary segmentation problem on the CERTH dataset, the model 

yields high accuracy scores, showing that the model has the potential to be successfully adapted to novel 

tasks. 
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Table 2 Average normalized accuracy and intersection over union scores of the segmentation model on test sets of CLC, 

HRL, URBAN-ATLAS and CERTH datasets 

Dataset Accuracy (Test) 

Average Normalized Accuracy Intersection Over Union (IoU) 

CLC 

(43 classes) 

61.4% 48.3% 

HRL 

(4 classes) 

71.5% 60.3% 

URBAN-ATLAS 

(19 classes) 

62.3% 31.1% 

CERTH 

(2 classes) 

80.6% 

  

73.4% 

 

Complementary qualitative results can be found in Figure 9, Figure 10, Figure 11, and Figure 12 CLC, 

HRL, URBAN-ATLAS, and CERTH datasets, respectively. The CLC result in Figure 9 suggests that the 

model is able to predict large regions correctly. However, the details differ in CLC ground truth vs model 

predictions. It should be noted that neither the model nor the ground truth is fully correct, as the ground 

truth misses important fine-grained details, some of which seem to be recovered by the model. This case 

shows that with the weak and noisy annotations provided by CLC, it is not only challenging to train a 

segmentation model, but it is also difficult to validate and evaluate it. 

Figure 10 and Figure 11 present example prediction results on the HRL and URBAN-ATLAS benchmarks, 

which provide finer-grained ground truth annotations. These results suggest the V1 model is able to predict 

most of the large regions correctly, with mispredictions in small details. These shortcomings are most likely 

caused by the weak and noisy training annotations during training. 

Finally, Figure 12 provides two example predictions using the CERTH model and benchmark. The result 

shows that the model is able to produce detailed and overall accurate predictions thanks to the accurate 

training data. 
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Figure 9: Visualization of a validation sample from CLC dataset. Left-Column: Input Image, Right-Top: (Noisy) Ground-

Truth Annotation, Right-Bottom: Prediction of the Segmentation. 

 

Figure 10: Visualization of a validation sample from HRL dataset. Left-Column: Input Image, Right-Top: Ground-Truth 

HRL Annotation, Right-Bottom: Prediction of the Segmentation Model. 

 

Figure 11: Visualization of a validation sample from URBAN-ATLAS dataset. Left-Column: Input Image, Right-Top: 

Ground-Truth URBAN-ATLAS Annotation, Right-Bottom: Prediction of the Segmentation Model. 
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Figure 12: Visualization of a validation sample from CERTH dataset. Left-Column: Input Image, Right-Top: Ground-

Truth CERTH Annotation, Right-Bottom: Prediction of the Segmentation Model. 

 

Comparison to the literature:  Our goal in V1 has been to establish a strong baseline for follow-up work 

(for V2) to work on more advanced for handling weakly supervised data. V2 report is planned to contain 

additional comparisons with the incorporation of updated approach(es). Since there were no benchmarks 

that satisfy the requirements for EarthSignature development, the aforementioned benchmarks were defined 

and realized as part of the work in the project, and, the approach has been engineered in a principled manner 

using these benchmarks. However, still, a rough comparison to an existing recent work can be desirable.  

To this end, we have found one independent work [2] which is the only comparable work that we are aware 

of, similarly studies deep semantic segmentation over the weak and noisy labels of CLC annotations, in 

combination with Sentinel-2 imagery. It is neither possible to fully reproduce the benchmark of this dataset 

due to missing details, nor of direct interest for EarthSignature development goals. However, due to the 

similarity of the CLC benchmark formulated in T3.3 and the experimental setup of this manuscript, a 

general comparison can be made even if the setups are not fully compatible. 

The work by Ulmas & Liiv [2] studies CLC-based semantic segmentation using a maximum class 

granularity of 25 classes, based on CLC Level 3. According to the confusion matrix reported in the 

manuscript, the proposed approach yields a normalized accuracy of 21%. Using 15 classes based on the 

CLC Level 2 nomenclature, the manuscript reports an average normalized accuracy of 31%. In contrast, 

the model used in EarthSignature V1, as reported above, yields a normalized accuracy of 61.4% over 43 

classes. We note that the segmentation problem, naturally, becomes more difficult as the number of classes 

increases. Therefore, despite the roughness of the comparison, the clear superiority of the results achieved 

in EarthSignature highlights the strength of the state of the V1 model.  

Summary: The models used as part of the EarthSignature Software V1 provide land cover segmentation 

results that are ready for exploitation. The overall deep learning approach is planned to be improved towards 

better serving the user (in particular, the SnapEarth pilots) needs. 
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2.2.3 Efficient model serving 

Once the model is available, it can be challenging to serve it efficiently and update it without impacting the 

rest of the system. Most Machine Learning practitioners embed their model in an HTTP server and query 

it using a REST API. Following the best practices for serving a model at a large scale, in the SnapEarth 

project, we choose to use a dedicated server developed by NVIDIA Triton Inference Server8. Triton 

Inference Server simplifies the deployment of AI models at scale in production. It is an open-source 

inference-serving software that lets teams deploy trained AI models from any framework from local storage 

or remote storage on any GPU- or CPU-based infrastructure. As the models are retrained continuously with 

new data, the developers can easily update models without restarting the inference server without disrupting 

the application.  

NVIDIA Triton server comes with a gRPC client library we can use to submit inference requests. However, 

the functionality of this client is low-level and not very user-friendly. We develop a wrapper around this 

client to query the server more efficiently for the project's specific needs. 

Table 3 gives the status of the features that must be implemented in the Model Service. All the features 

provided by this service are implemented 

 

Table 3 Status of the modules in the Model service 

Module Status 

Inference server Finished: 

- Server deployment 

- Models configuration 

Inference gRPC client Finished 

Model repository Finished: 

- Model repository for 

specifications 

- Repository deployment 

Segmentation model version 20201118 

2.3 Database service 

The database service is responsible for storing and serving the segmentation map extracted from the 

products. This service relies on a Postgresql9 database with the PostGIS10 extension to store geographical 

information about the satellite products. The pilots can directly query this service using the gRPC protocol. 

Figure 13 shows an overview of the architecture of the database API. There are two routes when a client 

 

8 https://developer.nvidia.com/nvidia-triton-inference-server 
9 https://www.postgresql.org/ 
10 https://postgis.net/ 
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queries the API. The first is available internally to the project to create a product in the database, and the 

second is public and allows retrieving the information from the database. 

 

Figure 13: Architecture overview of the Database service 

This service is the component that will be available online. It creates new entries in the database using the 

data sends by the Monitor service and allows pilots to perform a query to the database in a secure way. 

Communication between the pilots and the service is performed using the gRPC protocol. The format of 

the messages and the description of the endpoint is detailed in the Appendix. Figure 14 describes the schema 

of the database.The database contains one entry per product at each date. For each product processed, there 

is one segmentation maps by category that corresponds to the prediction returned by the model service. 

 

Figure 14: Schema of the EarthSignature database 

The pilots will have access to the service definition file that will allow them to implement their client. In 

the appendix, we provide detailed documentation of the messages and endpoints of the service. 

The endpoint for querying the service is available at earthsignature.snapearth.eu:443 

  

http://earthsignature.snapearth.eu:443/
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Table 4 gives the status of the features that must be implemented in the Database Service. The remaining 

features for this service are the authentication of the users and modifying the format of the exchanged 

message with the client to reduce the bandwidth used by an API call. 

Table 4 Status of the modules in the Database service 

Module Status 

Database specification Finished: 

- Design database schema 

- Deploy database server 

- Initialisation script  

Database gRPC server API Finished: 

- Add product endpoint: finished 

- Query product by geometry: 

finished 

- Query product by date: finished 

 

In Progress: 

- Query product by categories: in 

progress 

- Use GeoJSON/Geobuf format as 

returned format: in progress 

Database gRPC client Finished 

Authentication Finished: 

- Mutual authentication using TLS 

certificates 

In Progress: 

- Protocol to exchange certificates 
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3. Conclusion 
In this document, we presented the various services that compose the EarthSignature software for version 

1. It comprises three main components, the Monitor service, the Database service, and the Model service. 

We present an overall architecture schema that describes how the services are connected and the messages 

exchanged. The complete description of these messages is in the Appendix with the list of the endpoints 

provided by EarthSignature. 

We also provide an extensive description of the models we integrate into this service. We describe the 

datasets used, our training protocol, and how we evaluated the models. We explain how the models are 

integrated with the service using the Model Service. 

For the next period, for model training, we plan to work on updating the current weakly supervised learning 

strategy by incorporating limited amount of auxiliary high-resolution / non-noisy pixel level annotations. 

We plan to develop a new approach for this purpose, report its evaluation results with comparisons to the 

related approaches. 

For the service, we plan to reduce the time spent processing an image without increasing the computing 

capacity of the service. We will use multiple recent methods for model inference published by 

manufacturers like Intel or Nvidia to achieve this goal. We also want to reduce the size of the data stored 

for each product. Today we stock them as binary large objects, and we will benchmark if storing them as 

vector data may be more efficient for our use case. 

Finally, we enumerate the progress of the EarthSignature Software by listing the progress of the 

implementation of the features in each module. 
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