

* Dissemination Level: PU= Public, RE= Restricted to a group specified by the Consortium, PP= Restricted to other

program participants (including the Commission services), CO= Confidential, only for

members of the Consortium (including the Commission services)

** Nature of the Deliverable: R= Report, DEM= Demonstrator, Pilot, Prototype, DEC= Websites, patent fillings, videos,

etc., OTHER= Other, ETHICS= Ethics requirement, ORDP= Open Research Data Pilot,

DATA= datasets, microdata, etc.

This project has received funding from the European Union’s Horizon 2020 innovation action

programme under grant agreement No 870373 – SnapEarth.

Project 870373

H2020-SPACE-2018-2020

DT-SPACE-01-EO-2018-2020

Deliverable D3.2

Title: Earth Signature software v1

Dissemination Level: PU

Nature of the Deliverable: OTHER

Date: 26/10/2021

Distribution: WP 3

Editors: QWANT

Reviewers: CERTH, CSR

Contributors: QWANT, METU

Abstract: This document presents the development of the SnapEarth EarthSignature service. The

EarthSignature service is one of the central components of the SnapEarth project. The service extracts the

semantic information from the Sentinel2 images then makes them available via a public API. This document

describes our progress in the development of this service and which features remain to complete it.

Ref. Ares(2021)6615400 - 27/10/2021

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 1 of 28

Disclaimer

This document contains material, which is copyright of certain SnapEarth consortium parties and may not

be reproduced or copied without permission. The information contained in this document is the proprietary

confidential information of certain SnapEarth consortium parties and may not be disclosed except in

accordance with the consortium agreement.

The commercial use of any information in this document may require a license from the proprietor of that

information.

Neither the SnapEarth consortium as a whole, nor any certain party of the SnapEarth consortium warrants

that the information contained in this document is capable of use, or that use of the information is free from

risk, and accepts no liability for loss or damage suffered by any person using the information.

The contents of this document are the sole responsibility of the SnapEarth consortium and can in no way

be taken to reflect the views of the European Commission.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 2 of 28

Revision History

Date Rev. Description Partner

31/03/2021 01.0 Document creation Qwant

31/05/2021 01.1 Update with the description of the training process METU

31/07/2021 01.2 Update with comments from the review Qwant

01/10/2021 01.3 Updates with comments from the internal review Qwant,

METU

18/10/2021 01.4 Various template updates QWANT

25/10/2021 01.5 Updates with comments from the internal review METU,

Qwant

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 3 of 28

List of Authors

Partner Author

Qwant Hicham Randrianarivo

Qwant Hubert Condemi

METU Gökberk Cinbiş

METU Samet Çetin

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 4 of 28

List of Reviewers

Partner Author

CERTH A. Zamichos

CERTH M. Tsourma

CERTH T. Efthymiadis

CSR C. Udroiu

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 5 of 28

Glossary

CLC Corine Land Cover

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 6 of 28

Table des matières
Revision History.. 2

List of Authors .. 3

List of Reviewers .. 4

Glossary .. 5

Table des matières ... 6

Executive summary ... 7

1. Introduction ... 8

1.1 Scope of the deliverable ... 8

1.2 Architecture overview .. 9

2. Services Implementation status .. 11

2.1 Monitor service .. 11

2.2 Model service... 14

2.2.1 Training process used in EarthSignature Software V1. .. 16

2.2.2 Status of the model (V1) ... 19

2.2.3 Efficient model serving... 23

2.3 Database service... 23

3. Conclusion .. 26

References... 27

Appendix .. 28

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 7 of 28

Executive summary

This document presents the development of the SnapEarth EarthSignature service to be developed in the

WP3 of the SnapEarth project.

EarthSignature is the service that provides the interpretation of Sentinel2 products for all the pilots in the

project. The goal of EarthSignature is to extract land cover information from the raw pixels of a Sentinel2

product. We achieve this task by performing semantic segmentation methods to assign a category to each

product pixel. The classes we define for this task are critical because they represent the utility of our service.

It is the reason we decided to use the categories from the Corine Land Cover (CLC) taxonomy for our

primary segmentation model. Still, we also provide models for the pilots with specifics needs.

The document will present the architecture of EarthSignature and the progress so far in its implementation.

We will describe how we get the products, the processes we applied to them, how we train the models, and

how we make the segmentation results available for the pilots.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 8 of 28

1. Introduction

1.1 Scope of the deliverable

This document reports the status and achievements of Task 3.3, EarthSignature software v1. This

deliverable aims to present EarthSignature’s architecture and describe its implemented components and

those that are not yet implemented. The deliverable is composed of this document and an appendix

describing the messages exchanged between EarthSignature and the services that will query its database.

The appendix also describes the endpoints to connect to the service.

The document is structured as follows. Section 1 provides an overview of the EarthSignature service,

starting with a brief description of the document and an overview of its architecture. Section 2 describes

the status of each service at the date of delivery. The section is divided into three subsections corresponding

to one module of the service. For each subsection, we provide an overview of the architecture of the

components. We describe the role of each element, and finally, we describe the technologies we used for

the development.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 9 of 28

1.2 Architecture overview

EarthSignature is a service whose goal is to download periodically new Sentinel 2 products, interpret theirs

content using semantic segmentation prediction then store the result in a database. This task is performed

weekly until the v2 of the service, then will be done daily for the final version of the service. The pilots will

access the service using a gRPC API1. Figure 1 is a coarse view of the architecture, and in each of the next

subsections, we present a detailed picture of the architecture of the service.

Figure 1: Architecture overview of the EarthSignature service

In the project, we focus on products that cover the European territory. The EarthSignature service contains

three components:

• The Monitor service which is the component that handles the products download and processing

of the data. It first searches the available products for a given date on a provider and then downloads

1 https://grpc.io/docs/what-is-grpc/

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 10 of 28

them. Then the service prepares the products for inference using the Model service and finally

sends them to the Database service. During the first period of the project, the service run weekly

and at the end of the project it should run daily.

• The Model service which is used to apply a specific model to a processed product. The service

also manages the entries and the updates of the models. The service must handle at least three

segmentation models:

o A model for the CORINE Land Cover

o A model for burnt areas

o A model for fine-grained segmentation of crops.

• The Database service which is the component that stores all the information generated by the

model and downloaded from the provider. The service is publicly accessible via a gRPC API to

query a list of inferred products. This service is also internally accessible within EarthSignature so

that new entries can be added to the database.

The pilots have access to the segmented product using the database gRPC API.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 11 of 28

2. Services Implementation status

2.1 Monitor service

The Monitor service is the heart of EarthSignature. It is the service that checks if new data is available from

the provider. It downloads and pre-processes them for the Model service and finally format and send the

data to the Database Service. We show the whole process in Figure 2.

Figure 2: Architecture overview of the Monitor service

This figure shows the different processing applied to an image before sending it to the database. The service

first performs a search request to the provider to retrieve the new products of the current day. The search

results are then sent to a scheduler that schedules a worker for each product in the search's results. The

workers are independent and can be run in parallel. Finally, each worker sends its output to the Database

service using the gRPC API.

The downloader module can download the product from various providers. This module uses the EODAG

library to download the products from the providers, a list of the available provider can be found in the

EODAG documentation2.

The segmentation model expects L2A products as input. However, this kind of product is not available

from every provider. In contrast, L1C products are available from most providers, so we download L1C

products by default. In the next version of the service, we will download by default L2A products when

available to save computing time.

2 https://eodag.readthedocs.io/en/latest/getting_started_guide/providers.html.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 12 of 28

The product processor is the module that transforms L1C products to L2A products using the Sen2Cor

library from the ESA. Also, machine learning models usually need to standardize input data and apply

model-specific transformations called preprocessing. The product processor also performs the

preprocessing of the data like the normalization of the images or the re-arrangements of the channels.

Luigi3 is the task manager we use to handle the whole pipeline. Luigi is a package that helps you build

complex pipelines of batch jobs. It takes dependency resolution, workflow management, visualization,

handling failures, command line integration, and much more. Figure 3 shows the dashboard of the Luigi

scheduler. It summarizes the status of the tasks in the pipeline. Using this dashboard, we can monitor the

status of the different tasks and particularly which jobs are running, which tasks are finished, and which

tasks failed.

Figure 3: Overview of the dashboard of the Luigi software

Luigi schedules the tasks of the pipeline as a directed acyclic graph (DAG). Each dot in Figure 4 represents

a task scheduled by Luigi. The tasks run following the link between them. Using the dependencies between

the tasks, Luigi can efficiently run them in parallel. Each line corresponds to the different processing that

will be performed on each image. The color of each dot corresponds to the status of the task. If the dot is

red, the job failed if the dot is green, the job succeeded, if the dot is yellow, the job is waiting to be run, and

if the dot is blue, the task is still running.

3 https://luigi.readthedocs.io/en/stable/

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 13 of 28

Figure 4: Visualization of the data processing pipeline

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 14 of 28

Table 1 gives the status of the features that must be implemented in the Monitor Service. The majority of

the features planned for the service are implemented. The remaining features include the integration of the

models trained on custom datasets.

Table 1 Status of the modules in the Monitor service

Module Status

Downloader Finished

- Download L1C product

- Unarchive result

- Store resulting products

Product processor In progress

- Transform L1C to L2A product:

finished

- CORINE Land Cover model

preprocessing: finished

- Burt Areas preprocessing: not

started

2.2 Model service

To provide a high-quality segmentation service, EarthSignature uses a deep-learning-based model. Serving

deep neural networks can be challenging, so we developed this service to serve the various models

developed in the project efficiently. Figure 5, shows an overview of the architecture of the service. A client

sends input data formatted for the inference. This data will be scheduled for inference, and if there is enough

data, it will be batched to improve latency. The server also manages the lifetime of a model. It loads it when

needed and manages resources for the model.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 15 of 28

Figure 5: Architecture overview of the Model service

The model service performs two tasks. First, it manages the different models by keeping track of their

history and making them accessible for inference using the model repository component. Second, it serves

the models to the client using the Inference server using appropriated computing resources. Thanks to this

component, we centralize deployment, updates, and access to the models of EarthSignature for easier access

to the clients.

The following section describes the process for training the model and which data are used for the training.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 16 of 28

2.2.1 Training process used in EarthSignature Software V1.

This section presents the deep learning approach used in constructing the models for EarthSignature

Software V1. In particular, the section defines and explains the problem, overall approach, network

architecture, training pipeline, and experimental setup details.

Problem definition: EarthSignature uses a deep learning based semantic segmentation model to provide a

high-quality service. The semantic segmentation model maps pixels of an input image or a satellite product

to one of predefined land cover categories. An important challenge in training is that the annotation masks

have much lower resolution (100m) than Sentinel-2 satellite imageries which have 10m/px and 20m/px

spatial resolution. In addition, visual inspection shows that the CLC annotations can occasionally be

incorrect in larger regions as well. Therefore, the CLC annotations provide weak and incorrect labels for

both training and validation purposes (as shown in Figure 6), yielding a challenging weakly and noisily

supervised learning problem.

Figure 6: Examples of noisy CLC samples Left: Image, Right: (noisy) CLC annotation.

Main approach: Deep convolutional neural networks, in particular Convolutional Neural Networks

(CNNs), are used in the construction of the semantic segmentation model. The model takes a preprocessed

input image (described below) and passes through the deep convolutional layers, and outputs a prediction

tensor. The prediction tensor contains the probability distribution over target classes for each pixel of the

input image. By applying a stochastic gradient descent-based optimization algorithm and minimizing the

pixel-wise categorical cross-entropy loss between ground-truth and predicted annotation masks in an

iterative manner, the network is trained towards predicting per-pixel true land cover classes.

Architecture: The semantic segmentation model is a modified version of a single scale, fully-convolutional

UNet semantic segmentation network [1], illustrated in Figure 7. The model consists of a contracting path

and an expansive path, which gives it the U-shaped architecture. The contracting pathway is a typical

convolutional network that consists of repeated application of convolutions with 3x3 kernels, each followed

by a batch normalization and a rectified linear unit (ReLU) and a max pooling operation. During the

contraction, the spatial information is reduced while feature information is increased. The expansive

pathway combines the feature and spatial information through a sequence of up-convolutions followed by

repeated application of convolutions with 3x3 kernels each followed by a batch normalization and a ReLU,

and concatenations with high-resolution features from the contracting pathway. At the end of the network

architecture, there is a single convolution operation with 1x1 kernel which maps the number of feature

channels to a number of predefined land cover categories followed by a soft-max activation function during

training.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 17 of 28

Figure 7: Architecture of the modified Unet semantic segmentation model

Each gray box represents the feature maps in each convolutional layer. The number of channels used is

indicated on top of the gray boxes (Adapted from https://innolitics.com/articles/medical-image-

segmentation-overview/).

Training pipeline. The training process of the model is divided into several stages. The first stage in the

training pipeline applies the necessary preprocessing on input images and annotation masks. For the images,

several training data statistics (max, min, channel-wise-mean) are computed and input images are min-max

scaled and channel-wise mean-centered, in order. Then, left-right flipping, up-down flipping, and random

rotation in the interval of [-180°,+180°] are applied on both images and annotation masks, each with a 50%

probability as augmentation methods.

The final semantic segmentation model is trained for 34 epochs with a batch size of 128 and a learning rate

of 1e-3 with an Adam optimizer with beta coefficients of 0,9 and 0,999. The train and validation loss plots

 can be found in Figure 8 (the dataset details are provided below). At epoch 34, validation loss takes its

lowest value.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 18 of 28

Figure 8: Loss plot of the semantic segmentation model during training

In addition to the main model, pilots (or external users) may need to train problem-specific models with

classes outside the CLC Level 2 Nomenclature. For such cases, pilot-specific datasets provided by the

partners are used for the construction of pilot-customized versions of land cover segmentation models. For

this purpose, the general-purpose model is adapted to these ad-hoc needs through model fine-tuning

methodologies. In particular, the layers of the pre-trained deep semantic segmentation network are frozen,

the final classification layer is replaced with a randomly initialized layer that performs classification among

only pilot-specific target classes. Currently, only the classification layer is adapted to the target due to data

limitations, however, the approach can easily be extended to full-fledged fine-tuning in the presence of a

large-scale pilot-specific data set.

Experimental setup: The main semantic segmentation model is developed using three different datasets.

The CLC dataset contains noisy annotations from Corine Land Cover 20184 and is used for training and

testing. HRL5 and URBAN-ATLAS6 based datasets are more fine-grained and less noisy in their annotation

quality when compared to the CLC dataset and are used for evaluation only. In addition, a burnt-area only

dataset, provided by CERTH (therefore, referred to as the CERTH dataset) is built with satellite imageries

and corresponding burnt area annotations and is used to evaluate the performance of pilot-specific training.

For the development and evaluation of the main model, a dataset with 515131 120x120 images of Sentinel-

2 L2A products is constructed. Each image has four spectral bands in 10m resolution (Band-02, Band-03,

Band-04, Band-08) and their corresponding Corine Land Cover (CLC) 2018 pixel-level annotation masks.

Image crops are taken from BigEarthNet7 dataset and corresponding pixel-level annotation masks are

extracted in an automated way from the CLC 2018 data. The dataset is divided into three splits (training,

4 https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
5 https://land.copernicus.eu/pan-european/high-resolution-layers
6 https://land.copernicus.eu/local/urban-atlas
7 http://bigearth.net

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/high-resolution-layers
https://land.copernicus.eu/local/urban-atlas
http://bigearth.net/

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 19 of 28

validation, and test splits) by following the proposed splits of the BigEarthNet paper. There are 267362,

122844, and 124923 samples in training, validation, and test splits, respectively. The semantic

segmentation model is trained with samples from the training split and its performance is monitored on

validation split to tune hyper-parameters and to avoid overfitting. The final performance of the model is

reported using samples belonging to the test split.

The constructed HRL and URBAN-ATLAS benchmarks contain 4 and 19 classes, which are mapped to

their counterparts in CLC Level 3 nomenclature. Therefore, a CLC-trained model can directly be evaluated

on HRL and URBAN-ATLAS benchmarks. These datasets are divided into three splits in the same way as

the splitting procedure as the CLC dataset. However, since the HRL and URBAN-ATLAS datasets are only

used for validation, their training splits are ignored and model performance on crops belonging to validation

and test splits are considered as the final test performance. The samples belonging to the CERTH dataset

are also divided into three splits and samples belonging to train split are used for pilot-specific fine-tuning,

samples belonging to validation split are used for monitoring, and samples belonging to test split are used

to evaluate the final performance of the fine-tuned model for the pilot-specific task.

Constructions of pilot-specific models: Pilots (or external users) may need to train problem-specific

models with classes outside the CLC Level 2 Nomenclature. For such cases, pilot-specific datasets provided

by the partners are used for the construction of pilot-customized versions of land cover segmentation

models. For this purpose, the general-purpose model is adapted to these ad-hoc needs through model fine-

tuning methodologies. In particular, the layers of the pre-trained deep semantic segmentation network are

frozen, the final classification layer is replaced with a randomly initialized layer that performs classification

among only pilot-specific target classes. Currently, only the classification layer is adapted to the target due

to data limitations, however, the approach can easily be extended to full-fledged fine-tuning in the presence

of a large-scale pilot-specific data set.

2.2.2 Status of the model (V1)

Evaluation metrics: There are two accuracy metrics being used to compute the performance of the model

on the aforementioned datasets. Average normalized accuracy is a simple metric that calculates the ratio of

the sum of true positive and true negative classifications overall classifications. Intersection Over Union

(IoU) quantifies the percent overlap between the target mask and predicted mask in segmentation problems

and when a false prediction occurs, it does not only penalize the class of which ground-truth label of the

pixel belongs, also penalizes the class of which predicted label belongs. Therefore, it is a stricter metric

compared to the more commonly used average normalized accuracy. The IoU score is calculated for each

class separately and then averaged over all classes to provide a global mean IoU score of semantic

segmentation prediction.

The main experimental results are presented in Table 2. From the results, it can be observed that IoU is

indeed a much stricter metric. In addition, we observe that while the CLC evaluations are noisy (due to

label noise and weak annotations), the model preserves comparable performance on HRL and URBAN-

ATLAS datasets. We also notice that for the binary segmentation problem on the CERTH dataset, the model

yields high accuracy scores, showing that the model has the potential to be successfully adapted to novel

tasks.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 20 of 28

Table 2 Average normalized accuracy and intersection over union scores of the segmentation model on test sets of CLC,

HRL, URBAN-ATLAS and CERTH datasets

Dataset Accuracy (Test)

Average Normalized Accuracy Intersection Over Union (IoU)

CLC

(43 classes)

61.4% 48.3%

HRL

(4 classes)

71.5% 60.3%

URBAN-ATLAS

(19 classes)

62.3% 31.1%

CERTH

(2 classes)

80.6%

73.4%

Complementary qualitative results can be found in Figure 9, Figure 10, Figure 11, and Figure 12 CLC,

HRL, URBAN-ATLAS, and CERTH datasets, respectively. The CLC result in Figure 9 suggests that the

model is able to predict large regions correctly. However, the details differ in CLC ground truth vs model

predictions. It should be noted that neither the model nor the ground truth is fully correct, as the ground

truth misses important fine-grained details, some of which seem to be recovered by the model. This case

shows that with the weak and noisy annotations provided by CLC, it is not only challenging to train a

segmentation model, but it is also difficult to validate and evaluate it.

Figure 10 and Figure 11 present example prediction results on the HRL and URBAN-ATLAS benchmarks,

which provide finer-grained ground truth annotations. These results suggest the V1 model is able to predict

most of the large regions correctly, with mispredictions in small details. These shortcomings are most likely

caused by the weak and noisy training annotations during training.

Finally, Figure 12 provides two example predictions using the CERTH model and benchmark. The result

shows that the model is able to produce detailed and overall accurate predictions thanks to the accurate

training data.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 21 of 28

Figure 9: Visualization of a validation sample from CLC dataset. Left-Column: Input Image, Right-Top: (Noisy) Ground-

Truth Annotation, Right-Bottom: Prediction of the Segmentation.

Figure 10: Visualization of a validation sample from HRL dataset. Left-Column: Input Image, Right-Top: Ground-Truth

HRL Annotation, Right-Bottom: Prediction of the Segmentation Model.

Figure 11: Visualization of a validation sample from URBAN-ATLAS dataset. Left-Column: Input Image, Right-Top:

Ground-Truth URBAN-ATLAS Annotation, Right-Bottom: Prediction of the Segmentation Model.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 22 of 28

Figure 12: Visualization of a validation sample from CERTH dataset. Left-Column: Input Image, Right-Top: Ground-

Truth CERTH Annotation, Right-Bottom: Prediction of the Segmentation Model.

Comparison to the literature: Our goal in V1 has been to establish a strong baseline for follow-up work

(for V2) to work on more advanced for handling weakly supervised data. V2 report is planned to contain

additional comparisons with the incorporation of updated approach(es). Since there were no benchmarks

that satisfy the requirements for EarthSignature development, the aforementioned benchmarks were defined

and realized as part of the work in the project, and, the approach has been engineered in a principled manner

using these benchmarks. However, still, a rough comparison to an existing recent work can be desirable.

To this end, we have found one independent work [2] which is the only comparable work that we are aware

of, similarly studies deep semantic segmentation over the weak and noisy labels of CLC annotations, in

combination with Sentinel-2 imagery. It is neither possible to fully reproduce the benchmark of this dataset

due to missing details, nor of direct interest for EarthSignature development goals. However, due to the

similarity of the CLC benchmark formulated in T3.3 and the experimental setup of this manuscript, a

general comparison can be made even if the setups are not fully compatible.

The work by Ulmas & Liiv [2] studies CLC-based semantic segmentation using a maximum class

granularity of 25 classes, based on CLC Level 3. According to the confusion matrix reported in the

manuscript, the proposed approach yields a normalized accuracy of 21%. Using 15 classes based on the

CLC Level 2 nomenclature, the manuscript reports an average normalized accuracy of 31%. In contrast,

the model used in EarthSignature V1, as reported above, yields a normalized accuracy of 61.4% over 43

classes. We note that the segmentation problem, naturally, becomes more difficult as the number of classes

increases. Therefore, despite the roughness of the comparison, the clear superiority of the results achieved

in EarthSignature highlights the strength of the state of the V1 model.

Summary: The models used as part of the EarthSignature Software V1 provide land cover segmentation

results that are ready for exploitation. The overall deep learning approach is planned to be improved towards

better serving the user (in particular, the SnapEarth pilots) needs.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 23 of 28

2.2.3 Efficient model serving

Once the model is available, it can be challenging to serve it efficiently and update it without impacting the

rest of the system. Most Machine Learning practitioners embed their model in an HTTP server and query

it using a REST API. Following the best practices for serving a model at a large scale, in the SnapEarth

project, we choose to use a dedicated server developed by NVIDIA Triton Inference Server8. Triton

Inference Server simplifies the deployment of AI models at scale in production. It is an open-source

inference-serving software that lets teams deploy trained AI models from any framework from local storage

or remote storage on any GPU- or CPU-based infrastructure. As the models are retrained continuously with

new data, the developers can easily update models without restarting the inference server without disrupting

the application.

NVIDIA Triton server comes with a gRPC client library we can use to submit inference requests. However,

the functionality of this client is low-level and not very user-friendly. We develop a wrapper around this

client to query the server more efficiently for the project's specific needs.

Table 3 gives the status of the features that must be implemented in the Model Service. All the features

provided by this service are implemented

Table 3 Status of the modules in the Model service

Module Status

Inference server Finished:

- Server deployment

- Models configuration

Inference gRPC client Finished

Model repository Finished:

- Model repository for

specifications

- Repository deployment

Segmentation model version 20201118

2.3 Database service

The database service is responsible for storing and serving the segmentation map extracted from the

products. This service relies on a Postgresql9 database with the PostGIS10 extension to store geographical

information about the satellite products. The pilots can directly query this service using the gRPC protocol.

Figure 13 shows an overview of the architecture of the database API. There are two routes when a client

8 https://developer.nvidia.com/nvidia-triton-inference-server
9 https://www.postgresql.org/
10 https://postgis.net/

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 24 of 28

queries the API. The first is available internally to the project to create a product in the database, and the

second is public and allows retrieving the information from the database.

Figure 13: Architecture overview of the Database service

This service is the component that will be available online. It creates new entries in the database using the

data sends by the Monitor service and allows pilots to perform a query to the database in a secure way.

Communication between the pilots and the service is performed using the gRPC protocol. The format of

the messages and the description of the endpoint is detailed in the Appendix. Figure 14 describes the schema

of the database.The database contains one entry per product at each date. For each product processed, there

is one segmentation maps by category that corresponds to the prediction returned by the model service.

Figure 14: Schema of the EarthSignature database

The pilots will have access to the service definition file that will allow them to implement their client. In

the appendix, we provide detailed documentation of the messages and endpoints of the service.

The endpoint for querying the service is available at earthsignature.snapearth.eu:443

http://earthsignature.snapearth.eu:443/

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 25 of 28

Table 4 gives the status of the features that must be implemented in the Database Service. The remaining

features for this service are the authentication of the users and modifying the format of the exchanged

message with the client to reduce the bandwidth used by an API call.

Table 4 Status of the modules in the Database service

Module Status

Database specification Finished:

- Design database schema

- Deploy database server

- Initialisation script

Database gRPC server API Finished:

- Add product endpoint: finished

- Query product by geometry:

finished

- Query product by date: finished

In Progress:

- Query product by categories: in

progress

- Use GeoJSON/Geobuf format as

returned format: in progress

Database gRPC client Finished

Authentication Finished:

- Mutual authentication using TLS

certificates

In Progress:

- Protocol to exchange certificates

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 26 of 28

3. Conclusion
In this document, we presented the various services that compose the EarthSignature software for version

1. It comprises three main components, the Monitor service, the Database service, and the Model service.

We present an overall architecture schema that describes how the services are connected and the messages

exchanged. The complete description of these messages is in the Appendix with the list of the endpoints

provided by EarthSignature.

We also provide an extensive description of the models we integrate into this service. We describe the

datasets used, our training protocol, and how we evaluated the models. We explain how the models are

integrated with the service using the Model Service.

For the next period, for model training, we plan to work on updating the current weakly supervised learning

strategy by incorporating limited amount of auxiliary high-resolution / non-noisy pixel level annotations.

We plan to develop a new approach for this purpose, report its evaluation results with comparisons to the

related approaches.

For the service, we plan to reduce the time spent processing an image without increasing the computing

capacity of the service. We will use multiple recent methods for model inference published by

manufacturers like Intel or Nvidia to achieve this goal. We also want to reduce the size of the data stored

for each product. Today we stock them as binary large objects, and we will benchmark if storing them as

vector data may be more efficient for our use case.

Finally, we enumerate the progress of the EarthSignature Software by listing the progress of the

implementation of the features in each module.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 27 of 28

References
[1] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image computing and

computer-assisted intervention (pp. 234-241). Springer, Cham.

[2] Ulmas, P., & Liiv, I. (2020). Segmentation of satellite imagery using u-net models for land cover

classification. arXiv preprint arXiv:2003.02899.

SnapEarth Deliverable 3.2 – “Earth Signature software v1”

H2020-DT-SPACE-01-EO-2018-2020 Project 870373 SnapEarth Page 28 of 28

Appendix

file:///home/hicham/Downloads/test/build/api.html#snapearth%2Fapi%2Fv1%2Fsegmentation.proto
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.Raster
file:///home/hicham/Downloads/test/build/api.html#snapearth%2Fapi%2Fv1%2Fdatabase.proto
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.CreateProductRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.CreateProductResponse
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.ListSegmentationRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.SearchSegmentationRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.SegmentationResponse
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.DatabaseProductService
file:///home/hicham/Downloads/test/build/api.html#scalar-value-types
file:///home/hicham/Downloads/test/build/api.html#title
file:///home/hicham/Downloads/test/build/api.html#int32
file:///home/hicham/Downloads/test/build/api.html#int32
file:///home/hicham/Downloads/test/build/api.html#uint32
file:///home/hicham/Downloads/test/build/api.html#title
file:///home/hicham/Downloads/test/build/api.html#geobufproto.Data
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.Raster
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.Raster
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#google.protobuf.Timestamp
file:///home/hicham/Downloads/test/build/api.html#google.protobuf.Timestamp
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#string

file:///home/hicham/Downloads/test/build/api.html#int32
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#int32
file:///home/hicham/Downloads/test/build/api.html#google.protobuf.FileDescriptorSet
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.Raster
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.Raster
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#string
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.ListSegmentationRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.SegmentationResponse
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.CreateProductRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.CreateProductResponse
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.SearchSegmentationRequest
file:///home/hicham/Downloads/test/build/api.html#snapearth.api.v1.SegmentationResponse

file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto%2Fgeobuf.proto
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Feature
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.FeatureCollection
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Value
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry.Type
file:///home/hicham/Downloads/test/build/geobuf.html#scalar-value-types
file:///home/hicham/Downloads/test/build/geobuf.html#title
file:///home/hicham/Downloads/test/build/geobuf.html#string
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.FeatureCollection
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Feature
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry
file:///home/hicham/Downloads/test/build/geobuf.html#string
file:///home/hicham/Downloads/test/build/geobuf.html#sint64
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Value
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Feature
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Value
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry.Type
file:///home/hicham/Downloads/test/build/geobuf.html#uint32
file:///home/hicham/Downloads/test/build/geobuf.html#sint64
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Geometry
file:///home/hicham/Downloads/test/build/geobuf.html#geobufproto.Data.Value
file:///home/hicham/Downloads/test/build/geobuf.html#uint32

file:///home/hicham/Downloads/test/build/geobuf.html#string
file:///home/hicham/Downloads/test/build/geobuf.html#double
file:///home/hicham/Downloads/test/build/geobuf.html#uint64
file:///home/hicham/Downloads/test/build/geobuf.html#uint64
file:///home/hicham/Downloads/test/build/geobuf.html#bool
file:///home/hicham/Downloads/test/build/geobuf.html#string

